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Abstract—Artificial intelligence-generated images have 

become increasingly realistic, often rendering flaws 

imperceptible to the human eye. In recent years, diffusion 

models have gained prominence, enabling users to generate 

images from descriptive text. To mitigate the potential for 

malicious misuse, various detection methods have been 

developed to identify images produced by these models, 

demonstrating strong performance in experimental settings. 

However, concerns remain regarding their robustness in real-

world applications, particularly against adversarial attacks. 

Accurately detecting such images under these conditions 

presents a significant challenge. In this study, we propose a 

novel attack method aimed at evaluating the resilience of these 

detection techniques. Our approach involves eliminating the 

frequency-domain fingerprints commonly associated with 

synthetic images, thereby generating adversarial samples. We 

further enhance the generalization capabilities of these samples 

to effectively challenge existing detection methods. Our 

experiments reveal significant vulnerabilities in these systems, 

highlighting the need for ongoing research to improve the 

detection of diffusion model-generated images and ensure their 

reliability in practical scenarios. 
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I. INTRODUCTION 

Many years ago, with the advent of Generative 
Adversarial Networks (GAN) [1], it became possible to 
generate incredibly realistic images. While some use GAN for 
entertainment, others exploit them maliciously, creating 
misleading images of celebrities or war-related weapons. 
These concerns have led to the development of various 
detection methods. Recently, new architectures like Denoising 
Diffusion Probabilistic Models (DDPM) [2] have emerged, 
significantly advancing synthetic image generation. Models 
such as Latent Diffusion [3], Stable Diffusion [3], GLIDE [4], 
and DALL·E 2 [5] can produce high-quality images. However, 
similar issues arise with diffusion models, necessitating 
detection methods to distinguish real from generated images. 
Previous detection methods either input images directly into 
neural networks or convert them into the frequency domain, 
as [6] found that the up-sampling step in CNNs leaves 
distinctive fingerprints, aiding in differentiation. 

In [7], the effectiveness of past GAN detection methods on 
diffusion model-generated images was explored, revealing 
that even robust methods struggled due to differing 
characteristics. Several detection methods for diffusion 
models have been proposed, achieving high accuracy, but 
their robustness remains to be validated. For instance, [8] 
directly input images for detection, while [9] focused on the 
similarity of regenerated images. Additionally, [10] analyzed 
the differences between real images and those generated from 
prompts, arguing that generated images closely match their 
prompts. While these methods have shown over 90% accuracy, 
robustness is crucial, especially in real-world scenarios where 

images may be compressed or blurred. Testing methods often 
involve applying compression or Gaussian blur to assess 
detection effectiveness. Some methods fail under such 
conditions, indicating a lack of robustness. 

Beyond basic testing methods, more in-depth testing 
involves designing specific attacks on detection methods. For 
instance, [11] utilized the Iterative Fast Gradient Sign Method 
(I-FGSM) to iteratively adjust pixel values based on detection 
feedback until the detection method was deceived, further 
testing its robustness. 

Currently, basic robustness tests like compression and 
Gaussian blur are applied to diffusion model detection 
methods. However, no specific method has been designed to 
attack these detection methods and assess their vulnerabilities. 
This paper proposes a method to specifically attack diffusion 
model detection methods to evaluate their robustness. Our 
method has two main objectives: first, to successfully reduce 
the detection accuracy of targeted detection methods, and 
second, to generalize the method to unseen detection methods. 
Initially, we eliminate the fingerprint left in the frequency 
domain by the image generation process. As noted in [7], 
images generated by diffusion models, similar to those 
generated by GAN, leave detectable fingerprints. Using the 
filter proposed by [12], we obtained Fig. 1, which illustrates 
the fingerprints left by diffusion model-generated images: (a) 
Real Image, (b) GLIDE, (c) Latent Diffusion. 

We believe that removing these obvious detection features 
will reduce the basis for determining image authenticity. Thus, 
we designed a GAN to eliminate these fingerprints in the 
frequency domain. The processed images are then input into 
the detection method to obtain a score. We iteratively adjust 
the pixel values and reinput the images into the detection 
method, repeating this process until the score diminishes to 
our set target. 

 
Fig. 1: The fingerprints of images after Fourier transformation in the freque

ncy domain 

The objective is to generalize our method for unseen detection 

methods using adversarial samples, which are tailored based 

on feedback from the input detection model. By enhancing the 

pixel value adjustment process, we aim to demonstrate that 

successful attacks on unseen methods indicate a lack of 

robustness in those detection techniques. 
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II. RELATED WORKS 

A. Adversarial Perturbation Attack 

Adversarial perturbation attacks disrupt features that 
distinguish real from generated images, exploiting detection 
methods that rely on single features. The simplest method 
involves image compression, which can lead to detection 
errors. In [13], four types of adversarial perturbation attacks 
are proposed: a threshold-based method misclassifies inputs 
by ensuring predicted probabilities fall below a set threshold; 
a loss function maximizes the probability of misclassification 
while limiting perturbation; a universal adversarial patch is 
added, though it is visually noticeable; and a universal feature 
space attack misclassifies any image with a specific 
perturbation, which is less detectable. In [14], a method 
minimizes a loss function based on classification probabilities, 
using the gradient sign method for perturbation, enhancing 
generalization for black-box attacks. This method introduces 
a universal perturbation that can be easily applied to achieve 
effective misclassification. 

B. Elimination of Manipulation Fingerprints in the 

Frequency Domain 

Elimination of manipulation fingerprints in the frequency 

domain, aims to eliminate operational fingerprints in the 

frequency domain, identified as differences between real and 

generated images. In [6], it was found that these fingerprints 

result from the up-sampling process, and removing them can 

mislead detection methods. In [15], a method incorporating 

noise addition and deep filtering was introduced, effectively 

disrupting fingerprints while aligning spectral distributions, 

though it caused quality degradation. They proposed selective 

noise addition using an adversarial guided map for better 

results. Additionally, [16] introduced SpectralGAN, which 

includes an extra discriminator to improve the spectral 

distribution of generated images, reducing detectable 

fingerprints and enhancing indistinguishability from real 

images. 

C. Employing Image Filtering to Mislead Detectors 

This attack method uses image filters to mislead detectors 
by addressing operational fingerprints broadly, not just in the 
frequency domain. In [17], the detectable checkerboard-like 
spectral fingerprint from CycleGAN-generated images was 
tackled by improving the CycleGAN architecture with fixed 
convolutional layers to eliminate up-sampling issues, 
effectively reducing detection accuracy. Experimental results 
showed that the modified CycleGAN significantly decreased 
detection rates compared to the original. Additionally, in 
FakePolisher [18], a dictionary model trained on real images 
created a low-dimensional space for regenerating images, 
which significantly reduced fingerprints without introducing 
new generative artifacts. 

III. PROPOSED METHOD 

A. System Architecture 

Our proposed GAN consists of a generator that regenerates 

images to eliminate fingerprints in the frequency domain and 

a discriminator that penalizes the generator during training. 

Once trained, the generator removes frequency domain 

fingerprints from images generated by the diffusion model. 

The processed images are then used to generate adversarial 

samples using the gradient sign method. Fig. 2 illustrates the 

architecture of this method, which will be detailed in two 

parts: the elimination of frequency domain fingerprints and 

the generation of adversarial samples. 

 
Fig. 2: Architecture of generating adversarial sample approach 

B. Eliminating Frequency Domain Fingerprint 

To eliminate frequency fingerprints, we employ a GAN 
architecture based on the design proposed in [19], which 
originally includes one generator and three discriminators to 
address spatial anomalies, spectral differences, and specific 
fingerprints. However, our method focuses solely on 
frequency domain fingerprints, utilizing only one 
discriminator to differentiate between the spectra of real and 
generated images, while maintaining the generator's original 
architecture. Fig. 3 illustrates our framework for eliminating 
frequency domain fingerprints. 

 

Fig. 3: Architecture of eliminating frequency domain fingerprint. 

C. Generator 

For the generator 𝐺, we utilize the architecture proposed 
by [19], based on the U-Net structure [20]. Fig. 4 illustrates 
this architecture, which performs three main tasks: down-
sampling through feature extraction and halving the feature 
map size, up-sampling by enlarging and concatenating feature 
maps with skip connections, and addressing frequency domain 
fingerprints introduced during up-sampling. To prevent new 
fingerprints, [19] incorporated a "feature scaling layer" that 
replaces transpose convolutions with nearest or bilinear up-
sampling, as suggested by [21]. This modification ensures that 
the final enlarged feature map undergoes 1×1 convolution 
without introducing new frequency domain fingerprints. 

        
                

           

        

              
               



 
Fig. 4: Architecture of Generator 

1) Discriminator 

The discriminator 𝐷 employs a simpler CNN architecture, 
as noted by [19], to prevent an imbalance that could hinder the 
generator's training. This design allows the discriminator to 
effectively learn the frequency domain fingerprints of 
generated images, aiding the generator in their elimination. 
Fig. 5 illustrates the discriminator's architecture, which 
convolves the frequency domain image six times before 
passing it through a fully connected layer. The output, which 
does not utilize an activation function, yields values ranging 
from [−∞,∞]; larger values indicate a higher likelihood of 

being a real image, while smaller values suggest a generated 
fake image. We utilize the two-dimensional Discrete Fourier 
Transform (2D-DFT) to convert images into the frequency 
domain. 

 
Fig. 5: Architecture of Discriminator 

2) Loss Function 

In training our GAN, we initially used cross-entropy as the 
loss function, as noted in [19]. However, this approach failed 
to eliminate frequency domain fingerprints, likely due to the 
use of a single discriminator, which provided insufficient 
gradient feedback to the generator. To address this, we 
adopted the Wasserstein GAN (WGAN) loss function, which 
stabilizes learning by mitigating the issues caused by overly 
strong discriminators. The loss functions for the generator LG 
and discriminator 𝐿𝐷 are defined as follows: 

𝐿𝐺 =  − 𝔼
𝐺(𝑥𝑓𝑎𝑘𝑒)~ℙ𝑔

[𝐷(𝐺(𝑥𝑓𝑎𝑘𝑒))]  () 

𝐿𝐷 =  𝔼
𝐺(𝑥𝑓𝑎𝑘𝑒)~ℙ𝑔

[𝐷 (𝐺(𝑥𝑓𝑎𝑘𝑒))]

− 𝔼
𝑥𝑟𝑒𝑎𝑙~ℙ𝑟

[𝐷(𝑥𝑟𝑒𝑎𝑙)]

+ 𝑘 𝔼
𝑥~ℙ𝑢

‖∇𝑥𝐷(𝑥̂)‖𝑝 

() 

where 𝑃𝑟  is the probability distribution of real images, and 𝑥̂ 
is a combination of 𝑥𝑟𝑒𝑎𝑙  and 𝑥𝑓𝑎𝑘𝑒 . The adversarial loss for 

the GAN is defined as: 

𝐿𝑎𝑑𝑣 = 𝐿𝐺 + 𝐿𝐷 , () 

To ensure the regenerated images closely resemble the 

originals, we incorporate Perceptual Loss 𝐿𝑠𝑖𝑚(𝐺): 

𝐿𝑠𝑖𝑚(𝐺) =
1

𝐻𝑓𝑒𝑎×𝑊𝑓𝑒𝑎×3
‖VGG(𝑥𝑓𝑎𝑘𝑒) − VGG(𝐺(𝑥𝑓𝑎𝑘𝑒))‖

2

2
 , () 

This loss function utilizes the VGG network to compare 
feature representations, guiding the generator to produce 
images similar to the originals, where 𝐻𝑓𝑒𝑎  and 𝑊𝑓𝑒𝑎 denote 

the height and width of the feature maps, respectively. 

D. Generated Adversarial Sample 

We utilize the Iterative Fast Gradient Sign Method (I-
FGSM) proposed by [11] for generating adversarial samples. 
The process begins by inputting the image into the detector, 
which classifies its authenticity. The detector's output is then 
used to compute a value based on a defined loss function, 
allowing us to derive the gradient for pixel value adjustments. 
This iterative process continues until the maximum iterations 
are reached or the detector is deceived. To limit adjustments 
and prevent noticeable distortions, we define a perturbation 
magnitude ϵ and apply the clipping formula: 

𝐶𝑙𝑖𝑝𝑥,ϵ{𝑥′}(ℎ, 𝑤, 𝑧) = min{255, 𝑥(ℎ, 𝑤, 𝑧) + ϵ,

𝑚𝑎𝑥{0, 𝑥(ℎ, 𝑤, 𝑧) − ϵ, 𝑥′(ℎ, 𝑤, 𝑧)}}
 () 

Here, 𝑥′  is the modified image, with h and w as pixel 
coordinates, and z representing RGB channels. For the loss 
function, we adopt the one from [14], as it minimizes 
distortion and enhances robustness, defined as: 

𝐿𝑎𝑑𝑠(𝑥′) = max (𝑓(𝑥′)𝑜 − 𝑓(𝑥′)𝑦 , 0)  () 

where 𝑓(𝑥′)𝑜 and 𝑓(𝑥′)𝑦 are the predicted values for the 

original and opposite classes, respectively. Our goal is to 
minimize 𝐿𝑎𝑑𝑠. The I-FGSM is defined as: 

𝑥0
𝑎𝑑𝑣 = 𝑥 , 

𝑥𝑁+1
𝑎𝑑𝑣 = 𝐶𝑙𝑖𝑝𝑥,ϵ{𝑥𝑁

𝑎𝑑𝑣 − αsign (∇𝑥𝐿𝑎𝑑𝑠(𝑥𝑁
𝑎𝑑𝑣))}  

() 

In this method, pixel values are adjusted based on the 
gradient's direction, controlled by α, while ensuring 
adjustments remain within the specified perturbation 
magnitude ϵ. 

IV. EXPERIMENTAL RESULTS 

In this study, we aimed to evaluate the robustness of 
diffusion model detection methods against adversarial attacks. 
Our experiments focused on generating adversarial samples 
and assessing their impact on the accuracy of three prominent 
detection methods: UniFD, DIGBD, and SSIP. We utilized a 
dataset comprising 20,000 real images from the 2017 COCO 
dataset and 20,000 fake images generated by two diffusion 
models: Latent Diffusion and GLIDE. 

A. Evaluation Metrics 

The primary metric for evaluating the effectiveness of our 
adversarial samples was accuracy. We measured how well 
each detection method could classify images as real or fake 
before and after the introduction of adversarial samples. 

                                   

                                  

               

                      

               

        

   

   

  

   

   

  

  

  

   

  

   
  

  

  

  

 

   

   

   

   

        

  

                                                                                   



B. Dataset Composition 

The dataset was split into training, validation, and testing 
sets, with an 80-20 ratio for real and fake images. The detailed 
composition is shown in Table 1. 

 

Fig. 6: Dataset used in this study: (a) 2017 COCO dataset, (b) GLIDE, (c) 

Latent Diffusion. 

Table 1. Detailed Composition of the Real Image Dataset. 
Dataset Component Real Images Fake Images 

Training Set 14,400 14,400 

Validation Set 1,600 1,600 

Test Set 4,000 4,000 

C. Key Experimental Findings 

We conducted experiments to generate adversarial 
samples using the Iterative Fast Gradient Sign Method (I-
FGSM). The results demonstrated a significant decrease in the 
accuracy of the detection methods when subjected to 
adversarial samples. Table 2 summarizes the accuracy of each 
detection method before and after the introduction of 
adversarial samples. 

Table 2. Accuracy of Detection Methods. 

Dataset Component 
Accuracy 
Before Attack (%) 

Accuracy 
After Attack (%) 

UniFD [22] 92% 72% 

DIGBD [23] 89% 69% 

SSIP [24] 85% 11% 

As shown in Table 2, UniFD maintained a relatively 
higher accuracy compared to DIGBD and SSIP, which 
experienced a drastic drop, particularly SSIP, which fell to 
11%. This indicates that while some methods exhibit 
robustness, others are significantly vulnerable to adversarial 
attacks. 

D. Conclusion of Results 

The experiments highlight the effectiveness of our 
approach in generating adversarial samples that can deceive 

diffusion model detection methods. The substantial reduction 
in accuracy across the board underscores the need for ongoing 
research to enhance the robustness of these detection systems 
against adversarial attacks. Future work should focus on 
developing more resilient detection methods that can 
withstand such manipulations. 

E. Eliminating Frequency Domain Fingerprint 

Regarding the experiments on eliminating frequency 
fingerprint, we will first introduce our training setup. 
Previously, we discussed the dataset. During our training, we 
found that using the loss function from Wasserstein 
Divergence for GANs [25] significantly increased the training 
time. Therefore, we used a subset of the dataset for training.  

During the actual training of the entire network, we set the 
batch size to 8 and used the Adam optimizer [26]. The learning 
rates for the discriminator and generator were set to 1.6𝑒−4 
and 1.6𝑒−2, respectively. We also utilized a scheduler to aid 
in the learning process, set to reduce the learning rate by half 
every 5 epochs. The total training spanned 40 epochs. Training 
our model on a 14-core 2.7 GHz CPU and a 6GB RAM Nvidia 
GPU RTX 3060 took one week. 

1) Presenting the Effect of Eliminating Frequency 

Domain Fingerprint 

In our experiments, we found that although our goal was 
to eliminate frequency domain fingerprints, we did not 
achieve perfect results. However, we were able to partially 
remove some fingerprints. Fig. 7 shows our results: (a) 
Original GLIDE frequency domain fingerprints, (b) Original 
Latent Diffusion frequency domain fingerprints, (c) GLIDE 
frequency domain fingerprints after elimination, (d) Latent 
Diffusion frequency domain fingerprints after elimination. 
Despite not achieving complete elimination of the fingerprints, 
our subsequent testing revealed that the partial removal still 
had an impact on the detectors. 

 
Fig. 7: The effect of eliminating frequency domain fingerprint 

V. CONCLUSIONS 

This study explored the vulnerabilities of diffusion 

model detection methods to adversarial attacks, highlighting 

the need for enhanced robustness in these systems. Through 

a series of experiments, we demonstrated the effectiveness of 

generating adversarial samples using the Iterative Fast 

Gradient Sign Method (I-FGSM). Our findings revealed that 

while some detection methods, such as UniFD, exhibited a 
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degree of resilience, others, like SSIP and DIGBD, 

experienced significant drops in accuracy when faced with 

adversarial inputs. 

The results underscore the critical importance of not 

only achieving high accuracy in detection but also ensuring 

that these methods can withstand adversarial manipulations. 

As the landscape of AI-generated content continues to evolve, 

it is imperative for detection systems to adapt and improve. 

Future research should focus on developing more robust 

detection techniques that can effectively counteract 

adversarial attacks, thereby maintaining the integrity of 

image authenticity verification in an increasingly complex 

digital environment. 
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